

An Introduction to the Science Potential of Hanohano

A First Step for Long Range Anti-Neutrino Monitoring Of Reactors and Weapons from the Deep Ocean

Presented by
John G. Learned
University of Hawaii at Manoa

Hanohano Origins

- Started as an exercise in '03 investigating future potential for world reactor and weapons testing monitoring (see Guillian report), inspired by DTRA inquiry.
- Workshop in 1/04 concluded that such will be possible, with giant detectors, and technology just being developed.
 - http://www.phys.hawaii.edu/~jgl/nacw.html
- Plan is to get experience with remote monitoring with a detector that can be built today.
- Have identified at geology & physics workshops in '05 UH and '06 AGU Baltimore, NOW06 Italy, NNN06 Seattle, great science which a 10 kiloton deep ocean, portable, detector can accomplish.
 - UH 12/05 http://www.phys.hawaii.edu/~sdye/hnsc.html
 - AGU 5/06 http://www.agu.org/meetings/sm06/sm06sessions/sm06_U41F.html
 - Italy 9/06 http://www.ba.infn.it/~now2006/
 - Seattle 9/06 http://neutrino.phys.washington.edu/nnn06/

Nuclear Monitoring Requires Enormous Detectors

Single detector, $LE = Low Energy \sim > MeV$, $HE = High Energy \sim > GeV$

Size for 25% measurement of reactor flux, 1 yr, no background.

1-10 Megaton units similar to sizes proposed for slightly higher energy, and much smaller than ICECUBE under construction.

Spinoff, Planetary Defense: Type II Supernova Early Warning

Silicon burning during last ~2 days prior to collapse detectable from whole galaxy!
Sudden increase in single neutron appearance

Burning	T_c	ρ_c	μ_e	L_{ν}	Duration	Total energy
Phase	$[\mathrm{MeV}]$	[g/cc]	$[\mathrm{MeV}]$	[erg/s]	τ	emitted [erg]
C	0.07	$2.7\cdot 10^5$	0.0	$7.4\cdot 10^{39}$	$300~{ m yrs}$	$7\cdot 10^{49}$
Ne	0.146	$4.0\cdot 10^6$	0.20	$1.2\cdot 10^{43}$	$140 \; \mathrm{days}$	$1.4\cdot 10^{50}$
O	0.181	$6.0\cdot 10^{6}$	0.24	$7.4\cdot 10^{43}$	$180~\mathrm{days}$	$1.2\cdot 10^{51}$
Si	0.319	$4.9\cdot 10^7$	0.84	$3.1\cdot 10^{45}$	2 days	$5.4\cdot10^{50}$

Table 2

Properties of a 20 M_{\odot} star according to Ref. [6]. We have calculated the total energy radiated in neutrinos as a product τL_{ν} . Actually, the neutrino emission is expected to be a function of time.

Fig. 2. The standard solar neutrino spectrum (BP2000, [5]) for pp fusion reactions in the Sun (solid lines) and the spectrum of pair-annihilation neutrinos emitted by a 20 ${\rm M}_{\odot}$ star during silicon burning stage (dashed line). Star is located at a distance of 1 kpc.

Odrzywolek, et al., astro-ph/0311012

Hanohano Science Outline

- Introduction to project
- Neutrino Geophysics
 - U/Th mantle flux
 - Th/U ratio
 - Geo-reactor search
- Neutrino Oscillation Physics (new)
 - Mixing angles θ_{12} and θ_{13}
 - Mass squared difference Δm_{31}^2
 - Mass hierarchy
- Other Physics, Long range, Conclusions

Hanohano - 10x "KamLAND" in Ocean

Construct in shipyard, fill/test in port, tow to site, and submerge to ~4 km

Hawaii Anti-Neutrino Observatory[†]

Location flexibility

- Tow to various locations, cable connect
- Far from continental crust and reactors for neutrino geophysics- Hawaii, South Pacific, ...
- Offshore of reactor for neutrino oscillation physics- California,
 Taiwan, ...

† hanohano- Hawaiian for distinguished

Site survey done

Technological issues being addressed

- Radiopurity technology exists
- Scintillating oil studies: P=450 atm., T=0°
- Several choices available, safe, industrial
- Implosion studies at sea
- Engineering studies of detector structure, deployment

Actual Accomplishments: Structure

- Goal: workable vehicle at standard ship costs.
- Analyzed stability, weight, and structural strength vs scintillator volume, 5-120kT.
 - harbor, loading, testing, towing, submergence, landing, lift off, resurface, recovery.
- Single vehicle has problems with stability and weight, particularly larger sizes Al is costly option.
- Shape is cylindrical, cube not constructable, 30m dia.
- Dual barge and detector module has much less weight and stability restrictions. Can build very large.
- 10kt Scintillator is nominal 22kT detector, lose ~0.9kT buoyancy on bottom. Ascent 46 min.
- Structure: \$22m OK

1/50 scale model test

STAGE 1	STAGE 2	STAGE 3
DEPLOYMENT AND RECOVERY VESSEL MOVES TO VICINITY OF ASCENDING, BUT STILL SUBMERGED DETECTOR.	SURFACE VESSEL RECEIVES CYLINDERICAL DETECTOR IN CENTRAL HULL OPENING — FLUID TRANSFER COMMENCES FROM DETECTOR TO HANDLING VESSEL.	DETECTOR GAINS BUOYANCY AND INTERLOCKS WITH HANDLING VESSEL. ADDITION OF FLUID MASS INCREASES VESSEL DISPLACEMENT. INTEGRATED VESSEL MAY NOW TRANSIT.

Actual Accomplishments: Photomultiplier Electronics

Completed electronics prototypes:

• PMT voltage supply manufacturers surveyed sample devices in hand, several choices available (used in South Pole and Mediterranean experiments).

- PMT signal electronics prototypes constructed and tested at UH electronics facility, ready for second round for ocean tests.
- Signal digitization electronics prototypes constructed and tested at UH, ready for second round.
- No stoppers, power is as expected, need further refinement, reliability testing, etc.
 Adequate for proposal stage with predictable costing at this time.

Geology: Big Questions

- What drives continental drift, mid-ocean seafloor spreading?
- What produces and sustains the geomagnetic field?
- How did the earth form?
- Of what is the deep earth composed?
- This experiment addresses all these.

Preliminary Reference Earth Model

Knowledge of Earth interior from seismology

Dziewonski and Anderson, Physics of the Earth and Planetary Interiors 25 (1981) 297-356.

Measure velocity, use eq'n of state to infer density, guess composition.

Bulk Silicate Earth model

geologists "standard model"

Knowledge of Earth composition largely model dependent

McDonough and Sun, Chemical Geology 120 (1995) 223-253.

Mostly composition from three meteorites.

Terrestrial Heat Flow: 31-44 TW

Varies greatly, ocean spreading zones a problem

Time dependence a problem for geomagnetism

Pollack, Hurter, and Johnson, Reviews of Geophysics 31(3) (1993) 267-280.

Hofmeister and Criss, Tectonophysics 395 (2005) 159-177.

Parent Spectrum Geo-Neutrinos

Threshold for Reines and Cowan coincidence technique

No present method for K nus.

Predicted Geo-Neutrino Signal

Continental locations dominated by local crustal radioactivity.

Hanohano: Mantle/Core Measurement

Must subtract uncertain crust flux to get that due to mantle/core.

15 years of SNO+

48 years of Borexino

Hanohano: Mantle Measurement

No continental detector can measure the mantle/core flux to better than 50% due to 20% uncertainty in crust flux

Mantle (ev / 10 kT-y)

Earth Th/U Ratio Measurement

Project	δ R/R	Th/U	Years to 10%
crust type	(1 yr exposure)	(1 yr exposure)	measurement
KamLAND	2.0	4 ± 8	390
island arc			
Borexino	1.1	4 ± 4	120
continental			
SNO+	0.62	3.9 ± 2.4	39
continental			
Hanohano	0.20	3.9 ± 0.8	3.9
oceanic			

Statistical uncertainties only; includes reactors.

Geo-V projects: Predicted Rates

Project	Size	Geoneutrino	Crust	Mantle	Reactor
crust type	(10^{32} free p)	(events/y)	(events/y)	(events/y)	(events/y)
KamLAND	0.35	12.5	9.2	3.3	83.7
island arc					
Borexino	0.18	7.6	5.9	1.7	6.2
continental					
SNO+	0.57	30.0	24.7	5.3	35.1
continental				- A	
Hanohano	8.7	112.2	31.3	80.9	12.2
oceanic					

Measuring the Mantle

	Rate (10 kT-y)-1			
Source	KamLAND	SNO+	Borexino	Hanohano
Envir. Bkgd.	831 ± 196	18 ± 2	19 ± 2	12 ± 2
Reactor v	1434 ± 129	438 ± 39	298 ± 27	12 ± 1
Crust v	229 ± 46	377 ± 75	285 ± 57	30 ± 6
Non-Mantle	2494 ± 239	833 ± 83	602 ± 63	54 ± 7
Mantle	80 ± 16	80 ± 16	80 ± 16	80 ± 16
Total	2574 ± 240	913 ± 86	682 ± 65	134 ± 17
Signal	80 ± 290	80 ± 117	80 ± 89	80 ± 19

Note: while continental locations cannot measure mantle, combined measurements from all yield important geophysics.

Simulated Geo-Neutrino Source

Weighted heavily towards local region of mantle.

Make observations at several sites to test mantle variation.

Anti-Neutrinos from the Core?

Herndon hypothesis: natural breeder reactor in core of Earth with P=1-10 TW

Herndon, *Proc. Nat. Acad. Sci.* **93** (1996) 646. Hollenbach and Herndon, *Proc. Nat. Acad. Sci.* **98** (2001) 11085.

Controversial but apparently not ruled out, and if true of tremendous importance.

Geo-Reactor Search

Project crust type	Power limit 99% CL (TW)	5 σ discovery power (TW)
KamLAND island arc	22	51
Borexino continental	12	43
SNO+ continental	9	22
Hanohano oceanic	0.3	1.0

1 year run time- statistical uncertainties only

Need 1 – 10 TW to drive geomagnetic field.

- Non-zero neutrino mass and oscillations between flavors established.
- Filling in MNS-P mixing matrix needed.
- Need precise (few %) values.
- Quest for θ_{13} , need various approaches.
- Hierarchy of masses? (m₁<m₂<m₃?)
- CP violation? CPT?
- Importance to cosmology, grand unification....
- This experiment addresses many of these

3-V Mixing: Reactor Neutrinos

$$\begin{array}{l} P_{\rm ee} = 1 - \{ \; \cos^4(\theta_{13}) \; \sin^2(2\theta_{12}) \; [1 - \cos(\Delta m^2_{21} L/2E)] \\ + \; \cos^2(\theta_{12}) \; \sin^2(2\theta_{13}) \; [1 - \cos(\Delta m^2_{31} L/2E)] \\ + \; \sin^2(\theta_{12}) \; \sin^2(2\theta_{13}) \; [1 - \cos(\Delta m^2_{32} L/2E)] \} / 2 \; \end{array} \right\} \; \text{wavelength close, 3\%}$$

- \rightarrow Each of 3 amplitudes cycles (in L/E ~ "t") with own periodicity (Δ m² ~ "ω")
 - amplitudes 13.5 : 2.5 : 1.0 above
 - wavelengths ~110 km and ~4 km at reactor peak ~3.5 MeV
- ½-cycle measurements can yield
 - Mixing angles, mass-squared differences
- Multi-cycle measurements can yield
 - Mixing angles, precise mass-squared differences
 - Potential for mass hierarchy
 - Less sensitivity to systematics

Reactor & Atmospheric V Mixing Parameters: Present Knowledge

• KamLAND combined analysis $\tan^2(\theta_{12})=0.40(+0.10/-0.07)$ $\Delta m^2_{21}=(7.9\pm0.7)\times10^{-5} \text{ eV}^2$ Araki et al., *Phys. Rev. Lett.* 94 (2005) 081801.

• CHOOZ limit $\sin^2(2\theta_{13}) \le 0.20$ Apollonio et al., *Eur. Phys. J.* C27 (2003) 331-374.

• SuperK (and K2K) $\Delta m_{31}^2 = (2.5 \pm 0.5) \times 10^{-3} \text{ eV}^2$ Ashie et al., *Phys. Rev.* **D64** (2005) 112005
Aliu et al., *Phys. Rev. Lett.* **94** (2005) 081802

Significant V_e Flux Measurement Uncertainty Due to Oscillations

• Flux from distant, extended source like Earth or sun is fully mixed

•
$$P(v_e \rightarrow v_e) = 1-$$

 $0.5\{\cos^4(\theta_{13})\sin^2(2\theta_{12}) + \sin^2(2\theta_{13})\}$
 $= 0.592 (+0.035/-0.091)$

Lower value for maximum angles Upper value for minimum angles

•
$$\Phi_{\text{source}} = \Phi_{\text{detector}} / P(v_e \rightarrow v_e)$$

Uncertainty is $+15\% / -6\%$

22 September 2006 \Rightarrow precise flux measures Noted θ_{12} & θ_{13}

Proposed $\frac{1}{2}$ -cycle θ_{13} Measurements

- Reactor experiment- V_e point source
- Double Chooz, Daya Bay, Reno
- θ_{13} with "identical" detectors near (100m)/far(1-2 km)
- $P(V_e \rightarrow V_e) \approx 1 \sin^2(2\theta_{13})\sin^2(\Delta m_{31}^2 L/4E)$
- $\sin^2(2\theta_{13}) \le 0.03 0.01$ in few years
- Solar angle & matter insensitive
- Systematics difficult

Figure 3: Probability of ν_e disappearance versus L/E for θ_{13} at its current upper limit

Figure 4: Schematic layout of a two detector reactor neutrino oscillation experiment.

Anderson, et al., hep-ex/0402041

Idea: L. Mikaelyan, V. Sinev, Phys. At. Nucl. 62 (1999) 2008, hep-ph/9811228.

Suggested ½-cycle θ₁₂ Measurement

- Reactor experiment: V_e point source at modest distance (10-700 km).
- $P(v_e \rightarrow v_e) \approx 1 \sin^2(2\theta_{12}) \sin^2(\Delta m_{21}^2 L/4E)$
- 60 GW kT y exposure at 50-70 km ->
 - − ~4% systematic error from near detector
 - $-\sin^2(\theta_{12})$ measured with $\sim 2\%$ uncertainty
- We can do job without near monitor (?)

Bandyopadhyay et al., *Phys. Rev.* D**67** (2003) 113011. Minakata et al., hep-ph/0407326
Bandyopadhyay et al., hep-ph/0410283

Energy Spectra, Distance and Oscillations

Reactor Anti-Neutrino Spectra at 50 km

suggests using Fourier Transforms

1,3 oscillations with $\sin^2(2\theta_{13}) = 0.10$ and $\Delta m^2_{31} = 2.5 \times 10^{-3} \text{ eV}^2$

Rate versus Distance and θ_{13}

Note shift in total rate due to θ_{13}

Max suppression near 57 km

Fourier Transform on L/E to Δm^2

Includes energy smearing

Preliminary-

50 kt-y exposure at 50 km range sin²(2θ₁₃)≥0.02 Δm²₃₁=0.0025 eV² to 1% level

Learned, Pakvasa, Svoboda, Dye preprint in preparation

Beauty of Employing Fourier

(new realization, by us anyway)

- Normal statistical sqrt(n) Poisson errors apply to peak amplitude (mixing angle),
- but NOT to peak location... allows possibility for very precise measurement of Δm^2 (<1%?)
- Beats X² and normal Max£, I think. (?)
- Employ signal processing tricks to maximize information extraction (ie. matched filter).

Neutrino Mass Hierarchy w/ Reactor Neutrinos?

-needs work

 $|\Delta m^2_{31}| > |\Delta m^2_{32}|$ $|\Delta m^2_{31}| < |\Delta m^2_{32}|$

$$\Delta m_{32}^2 \approx (1 \pm 0.03) \Delta m_{31}^2$$

Petcov and Piai, Phys. Lett. B533 (2001) 94-106.

Peak has low-side small shoulder, inv hierarchy shoulder on high-side.

Normal and inverted hierarchy

Hanohano - Candidate Reactor Sites

SW of San Onofre, **Calif**- \sim 6 GW_{th} SE of Maanshan, **Taiwan**- \sim 5 GW_{th}

Depth profiles

Hanohano Science Summary 1 Yr, 10 Kiloton Exposures

- · Neutrino Geophysics, deep mid-ocean
 - Mantle flux U/Th geo-neutrinos to ~25%
 - Measure Th/U ratio to ~20%
 - Rule out geo-reactor of P>0.3 TW
- Neutrino Particle Physics, 50 km from reactor
 - Measure $\sin^2(\theta_{12})$ to few % w/ standard ½-cycle
 - Measure $\sin^2(2\theta_{13})$ down to ~0.05 w/ multi-cycle
 - Δm_{31}^2 at percent level w/ multi-cycle
 - No near detector; insensitive to background,
 systematics; complimentary to DC, DB, Minos, Nova
 - Potential for mass hierarchy with large exposure

Tests & Studies Needed

- Complete module anti-implosion work/tests.
- Demonstrate optical modules and scintillator in deep ocean.
- More scintillator studies, radiopurity, optimize choice.
- Further detector barge design and full costing.
- More detailed geological simulation, error analysis and study choice of deep ocean sites.
- Reactor distance and depth, including backgrounds.
- Can we do neutrino mass hierarchy with FT method?
- Neutrino direction studies.
 - + Other physics: SN, relic SN, nucleon decay, ... (recall that this will be the largest low energy detector, 20x KamLAND, 10x SNO+, 50x Borexino, but 0.2x LENA?).

- First step in development of long range neutrino monitoring applications
- Hanohano
 - 10 kT deep ocean anti-neutrino observatory
 - Movable for multi-disciplinary science
 - Neutrino geophysics
 - Neutrino oscillation physics and more
 - Under development at Hawaii
 - 1st collaboration meeting 3/07 in Hawaii interested? jgl@phys.hawaii.edu

Acknowledgements: Steve Dye, Peter Grach, Shige Matsuno, Sandip Pakvasa, Joe Van Ryzin, Bob Svoboda, Gary Varner, Mavourneen Wilcox, Makai Ocean Engineering, CEROS, DOE, UHM

Nucleon Decay with Hanohano

- PDK and SN data with geophysics studies...
- Nucleon Decay: kaon modes:
 - present: $\tau/b > 2.3 \times 10^{33} \text{ y [Super-K, PR D 72, 052007 (2005)]}.$
 - Hanohano: $\tau/b > 10^{34}$ y with 10 yr [Lena PR D 72, 075014 (2005)]
- Neutron Disappearance:
 - present: $\mathbf{\tau}$ (n → invis) > 5.8 × 10²⁹y at 90% CL

 τ (nn → invis) > 1.4 × 10³⁰y at 90% CL

[838 & 1119 metric ton-years of KamLAND, PRL 96 (2006) 101802]

- Hanohano: τ (n → invis) > 5 x 10³¹ y at 90% CL 10 yrs τ (nn → invis) > 5 x 10³¹ y at 90% CL

Simulations needed